use of freertos

This commit is contained in:
2025-07-20 18:26:24 +02:00
parent 156c683a56
commit 1ebca3056e
11 changed files with 1657 additions and 626 deletions

File diff suppressed because one or more lines are too long

View File

@@ -21,7 +21,8 @@ build_flags = -DARDUINO_USB_CDC_ON_BOOT=1 -DARDUINO_USB_MODE=1
; upload_protocol = espota
; upload_port = 192.168.2.136
; upload_port = 192.168.2.128
upload_port = 192.168.2.145
; upload_port = 192.168.2.145
; upload_port = 192.168.2.177
; upload_port = 192.168.2.33
;board_build.partitions = huge_app.csv
board_build.partitions = min_spiffs.csv

19
src/config.hpp Normal file
View File

@@ -0,0 +1,19 @@
#ifndef CONFIG_H
#define CONFIG_H
// uncommend for very first flash
// #define FIRST_BOOT
// #define ALARM_LED GPIO_NUM_2
#define ALARM_LED GPIO_NUM_3
#define ALARM_PIN GPIO_NUM_3
#define BRIGHTER_PIN GPIO_NUM_7
#define DARKER_PIN GPIO_NUM_8
#define EEPROM_SIZE 1
#define MODE_ADDRESS 0
#define NUM_LEDS 7 // do not touch
#endif

17
src/datatypes.hpp Normal file
View File

@@ -0,0 +1,17 @@
#ifndef DATATYPES_H
#define DATATYPES_H
#include "tlc.hpp"
enum NET_MODE{
MODE_BLE = 0,
MODE_WIFI = 1
};
struct taskParams{
Cockpit *cockpit;
enum Alarm *alarmFired;
enum Dimmer *dimmerState;
TaskHandle_t *thDisplayWarning;
};
#endif

View File

@@ -3,11 +3,15 @@
#include "HWCDC.h"
#include "esp32-hal-gpio.h"
#include "esp32-hal.h"
#include "freertos/portmacro.h"
#include "hal/gpio_types.h"
#include "secrets.hpp"
#include <EEPROM.h>
#include <cstdint>
#define EEPROM_SIZE 1
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include <BLE2902.h>
#include <BLEDevice.h>
@@ -21,31 +25,13 @@
#include <driver/rmt.h>
#include "tlc.hpp"
// uncommend for very first flash
// #define FIRST_BOOT
// #define ALARM_LED GPIO_NUM_2
#define ALARM_LED GPIO_NUM_3
#define ALARM_PIN GPIO_NUM_3
#define BRIGHTER_PIN GPIO_NUM_7
#define DARKER_PIN GPIO_NUM_8
#include "config.hpp"
#include "datatypes.hpp"
// both lines are useless, when using rmt mode
int pTime = 3; // in useconds
int tCycle = pTime * 6; // time for one bit. Per datasheet tCycle is between 0.33 useconds and 10 useconds
#define NUM_LEDS 7
#define MODE_ADDRESS 0
// #define MODE_BLE 0
// #define MODE_WIFI 1
enum MODE{
MODE_BLE = 0,
MODE_WIFI = 1
};
//#define TESTMODE 1
const char * ssid = SECRET_SSID;
@@ -60,9 +46,16 @@ BLEDescriptor AlarmLevelDescriptor(BLEUUID((uint16_t)0x2901));
// BLEServer * pServer = NULL;
// bool volatile deviceConnected = false;
bool volatile oldDeviceConnected = false;
uint32_t value = 0;
// uint8_t mode;
enum MODE mode;
// uint32_t value = 0;
enum NET_MODE mode;
void displayWarning( void * params);
void dimmer(void * params);
enum Alarm alarmFired = NO_ALARM;
enum Dimmer dimmerState = NO_DIMMER;
class MyServerCallbacks : public BLEServerCallbacks {
@@ -86,16 +79,6 @@ class MyServerCallbacks : public BLEServerCallbacks {
}
};
enum Alarm {
ALARM_1KM,
ALARM_500M,
ALARM_300M,
ALARM_100M,
NO_ALARM
};
enum Alarm alarmFired = NO_ALARM;
bool brighter = false;
bool darker = false;
@@ -104,22 +87,19 @@ uint8_t saveAlarmState;
int state = 0;
// std::string x;
// uint8_t stateLED = 0;
// byte stateLEDs[7][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
byte orange[3] = {0, 255, 0xA5};
byte red[3] = {0, 255, 0};
byte blue[3] = {255, 0, 0};
byte green[3] = {0, 0, 255};
byte color[3] = {0, 0, 0};
byte cyan[3] = {255, 115, 230};
byte brightnessState = 6;
byte brightnessState = 0;
Cockpit cockpit(ALARM_PIN, NUM_LEDS, pTime, tCycle, brightnessState);
TaskHandle_t thDisplayWarning;
struct taskParams pvParams = {
.cockpit = &cockpit,
.alarmFired = &alarmFired,
.dimmerState = &dimmerState,
.thDisplayWarning = &thDisplayWarning
};
// var to count to with state for different distances
int stateLimit = 50;
@@ -127,6 +107,8 @@ int stateLimit = 50;
bool brightnessUpPressed = false;
bool brightnessDownPressed = false;
enum Brightness brightnessFired = NO_CHANGE;
class MyAlarmCallback : public BLECharacteristicCallbacks {
@@ -157,6 +139,24 @@ class MyAlarmCallback : public BLECharacteristicCallbacks {
alarmFired = ALARM_100M;
state = 0;
}
else if (value.compareTo("brighter") == 0) {
Serial.println("found brighter");
// alarmFired_100m = 1;
// alarmFired = ALARM_100M;
// state = 0;
// brightnessFired = BRIGHTER;
dimmerState = BRIGHTNESS_UP;
}
else if (value.compareTo("darker") == 0) {
Serial.println("found darker");
// alarmFired_100m = 1;
// alarmFired = ALARM_100M;
// state = 0;
// brightnessFired = DARKER;
dimmerState = BRIGHTNESS_DOWN;
}
else if (value.compareTo("U") == 0) {
// reboot in WifiMode
Serial.println("Found U");
@@ -209,7 +209,7 @@ void IRAM_ATTR onTimer() {
portEXIT_CRITICAL_ISR(&timerMux);
}
volatile int pc = 0;
// volatile int pc = 0;
// Create the BLE Server
BLEServer * pServer = NULL;
@@ -226,6 +226,10 @@ void setup() {
Serial.begin(9600);
delay(1000);
Serial.println("Hallo Welt");
delay(1000);
Serial.println("Hallo Welt");
delay(1000);
Serial.println("Hallo Welt");
EEPROM.begin(EEPROM_SIZE);
#if defined(FIRST_BOOT)
@@ -234,7 +238,7 @@ void setup() {
EEPROM.commit();
#endif
mode = static_cast<enum MODE>(EEPROM.read(MODE_ADDRESS));
mode = static_cast<enum NET_MODE>(EEPROM.read(MODE_ADDRESS));
// mode = MODE_WIFI;
if (mode == MODE_BLE) {
@@ -245,13 +249,7 @@ void setup() {
timerAlarmWrite(timer, 100000, true);
timerAlarmEnable(timer);
// bitbanging timer
// timerBits = timerBegin(1, 80, true);
// rmt_reserve_memsize_t memsize = 1818;
// if (!rmtInit(ALARM_PIN, RMT_TX_MODE, RMT_MEM_512)) {
// Serial.println("init sender failed\n");
// }
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(ALARM_PIN, RMT_CHANNEL_0);
config.clk_div = 160; // 80
@@ -260,8 +258,11 @@ void setup() {
ESP_ERROR_CHECK(rmt_config(&config));
ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, 0));
InitBLE(pServer, serverCallback, myAlarmCallback);
xTaskCreate(displayWarning, "Warning", 1000, &pvParams, tskIDLE_PRIORITY, &thDisplayWarning);
xTaskCreate(dimmer, "Dimmer", 10000, &pvParams, tskIDLE_PRIORITY, NULL);
}
else if (mode == MODE_WIFI) {
// boot next time into ble mode
@@ -328,7 +329,6 @@ void setup() {
}
}
void loop() {
if (mode == MODE_WIFI) {
// ota update mode
@@ -336,119 +336,8 @@ void loop() {
// Serial.print("WIFI");
}
else {
// BLE mode
// occures every 100ms
if (ctr > 0) {
portENTER_CRITICAL(&timerMux);
ctr--;
portEXIT_CRITICAL(&timerMux);
if(digitalRead(BRIGHTER_PIN) == LOW && !brightnessUpPressed){
// save current alarmstate
saveAlarmState = state;
saveFiredAlarm = alarmFired;
brighter = true;
// brighter button pressed
if (brightnessState < 6){
brightnessState++;
}
stateLimit = 11; //
state = 0;
// cockpit.setBrightnessState(brightnessState, state);
Serial.println("++");
brightnessUpPressed = true;
}
else if (digitalRead(BRIGHTER_PIN) == HIGH){
brightnessUpPressed = false;
}
if(digitalRead(DARKER_PIN) == LOW && !brightnessDownPressed){
// save current alarmstate
saveAlarmState = state;
saveFiredAlarm = alarmFired;
darker = true;
// brighter button pressed
if (brightnessState > 0){
brightnessState--;
Serial.println("--");
}
stateLimit = 11;
state = 0;
brightnessDownPressed = true;
}
else if (digitalRead(DARKER_PIN) == HIGH){
brightnessDownPressed = false;
}
if(brighter){
cockpit.setBrightnessState(brightnessState, state);
state++;
stateLimit = 11;
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
}
else if(darker){
cockpit.setBrightnessState(brightnessState, state);
state++;
stateLimit = 11;
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
}
else if (alarmFired == ALARM_100M) {
cockpit.flashing(red, state, 2);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
state++;
stateLimit = 54; // 12*5
}
else if (alarmFired == ALARM_300M) {
cockpit.flashing(blue, state, 4);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
state++;
stateLimit = 54;
}
else if (alarmFired == ALARM_500M) {
cockpit.flashing(green, state, 6);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
state++;
stateLimit = 54;
}
else if (alarmFired == ALARM_1KM) {
cockpit.getColor(state, color);
cockpit.knightRiderColored(state, red);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
state++;
stateLimit = 80;
}
if (state >= stateLimit) {
state = 0;
// noInterrupts();
cockpit.turnOffLeds();
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
alarmFired = NO_ALARM;
if(brighter || darker){ // repair ongoing alarm if brightness was adjusted while alarm
// restore alarm + state
state = saveAlarmState;
alarmFired = saveFiredAlarm;
}
#if defined TESTMODE
ctr = -20;
#endif
brighter = false;
darker = false;
}
}
vTaskDelay(100/portTICK_PERIOD_MS);
if (serverCallback->getConnectionState()) {
@@ -465,8 +354,33 @@ void loop() {
// do stuff here on connecting
oldDeviceConnected = serverCallback->getConnectionState();
for(int i = 0; i < 27; i++){
cockpit.knightRiderColored(i, red);
Color c[] = {
Cockpit::YELLOW,
Cockpit::RED,
Cockpit::PURPLE,
Cockpit::BLUE,
Cockpit::CYAN,
Cockpit::GREEN,
Cockpit::YELLOW,
Cockpit::RED,
Cockpit::PURPLE,
Cockpit::BLUE,
Cockpit::CYAN,
Cockpit::GREEN
};
// for(int i = 0; i < 36; i++){
// // cockpit.knightRiderAdvanced(red, i);
// // cockpit.outToIn(red, i);
// cockpit.outToInMulticolor(c, 6, i);
// // cockpit.knightRiderColored(i, red);
// ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
// delay(100);
// }
for(int i = 0; i < 50; i++){
// cockpit.knightRiderAdvanced(red, i);
// cockpit.outToIn(red, i);
cockpit.inToOutMulticolor(c, 12, i);
// cockpit.knightRiderColored(i, red);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cockpit.led_data, sizeof(cockpit.led_data) / sizeof(rmt_item32_t), true));
delay(100);
}

174
src/tasks.cpp Normal file
View File

@@ -0,0 +1,174 @@
#include "Arduino.h"
#include "config.hpp"
#include "tasks.hpp"
#include "tlc.hpp"
#include "datatypes.hpp"
void displayWarning( void * params){
struct taskParams *myParams = (struct taskParams*)params;
Cockpit *cp = myParams->cockpit;
enum Alarm *alarm = myParams->alarmFired;
enum Alarm alarmStatebefore = NO_ALARM;
uint8_t alarmStateChanged = 0;
uint8_t statePreload = 0;
alarmStatebefore = *alarm;
while (true) {
if(*alarm != alarmStatebefore){
alarmStateChanged = 1;
}
else{
alarmStateChanged = 0;
}
switch (*alarm) {
case NO_ALARM:
vTaskDelay(100/portTICK_PERIOD_MS);
break;
case ALARM_100M:
if(alarmStateChanged){
alarmStatebefore = ALARM_100M;
statePreload = 30;
}
cp->flashing(Cockpit::WHITE, statePreload);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
statePreload--;
if(statePreload == 0){
*alarm = NO_ALARM;
alarmStatebefore = NO_ALARM;
}
vTaskDelay(300/portTICK_PERIOD_MS);
break;
case ALARM_300M:
if(alarmStateChanged){
alarmStatebefore = ALARM_300M;
statePreload = 20;
}
cp->flashing(Cockpit::ORANGE, statePreload);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
statePreload--;
if(statePreload == 0){
*alarm = NO_ALARM;
alarmStatebefore = NO_ALARM;
}
vTaskDelay(500/portTICK_PERIOD_MS);
break;
case ALARM_500M:
// Serial.print("Alarm 500");
if(alarmStateChanged){
alarmStatebefore = ALARM_500M;
statePreload = 20;
}
cp->flashing(Cockpit::GREEN, statePreload);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
statePreload--;
if(statePreload == 0){
*alarm = NO_ALARM;
alarmStatebefore = NO_ALARM;
}
vTaskDelay(500/portTICK_PERIOD_MS);
break;
break;
case ALARM_1KM:
if(alarmStateChanged){
alarmStatebefore = ALARM_1KM;
statePreload = 20;
// statePreload = 120;
}
// cp->flashing(orange, statePreload);
// cp->colorfade(statePreload);
cp->flashing(Cockpit::BLUE, statePreload);
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
statePreload--;
if(statePreload == 0){
*alarm = NO_ALARM;
alarmStatebefore = NO_ALARM;
cp->turnOffLeds();
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
}
vTaskDelay(500/portTICK_PERIOD_MS);
break;
default:
vTaskDelay(1000/portTICK_PERIOD_MS);
}
// Serial.println(uxTaskGetStackHighWaterMark(NULL));
}
}
void dimmer(void * params){
struct taskParams *myParams = (struct taskParams*)params;
Cockpit *cp = myParams->cockpit;
enum Dimmer *dimmerState = myParams->dimmerState;
TaskHandle_t *thDisplayWarning = myParams->thDisplayWarning;
uint8_t brighterPressed = 0;
uint8_t darkerPressed = 0;
uint8_t ctrBrightnessChanged = 0;
while (1) {
if((gpio_get_level(BRIGHTER_PIN) == 0 && brighterPressed == 0) || *dimmerState == BRIGHTNESS_UP){
// brighter
brighterPressed = 1;
ctrBrightnessChanged = 10;
*dimmerState = NO_DIMMER;
if(eTaskGetState(*thDisplayWarning) != eTaskState::eDeleted){
vTaskSuspend(*thDisplayWarning);
}
cp->brightnessUp();
cp->displayBrightness();
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
}
if (gpio_get_level(BRIGHTER_PIN) == 1 && brighterPressed == 1) {
// brighter button released
brighterPressed = 0;
}
if((gpio_get_level(DARKER_PIN) == 0 && darkerPressed == 0) || *dimmerState == BRIGHTNESS_DOWN){
// darker
darkerPressed = 1;
ctrBrightnessChanged = 10;
*dimmerState = NO_DIMMER;
if(eTaskGetState(*thDisplayWarning) != eTaskState::eDeleted){
vTaskSuspend(*thDisplayWarning);
}
cp->brightnessDown();
cp->displayBrightness();
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
}
if (gpio_get_level(DARKER_PIN) == 1 && darkerPressed == 1) {
// darker button released
darkerPressed = 0;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
if (ctrBrightnessChanged > 0){
ctrBrightnessChanged--;
if(ctrBrightnessChanged == 0){
// check if there are suspended tasks
if(eTaskGetState(*thDisplayWarning) == eTaskState::eSuspended){
cp->turnOffLeds();
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
vTaskResume(*thDisplayWarning);
}
else{
cp->turnOffLeds();
ESP_ERROR_CHECK(rmt_write_items(RMT_CHANNEL_0, cp->led_data, sizeof(cp->led_data) / sizeof(rmt_item32_t), true));
}
}
}
// Serial.println(uxTaskGetStackHighWaterMark(NULL));
}
}

7
src/tasks.hpp Normal file
View File

@@ -0,0 +1,7 @@
#ifndef TASKS_H
#define TASKS_H
void displayWarning( void * params);
void dimmer( void * params);
#endif

View File

@@ -1,6 +1,17 @@
#include "tlc.hpp"
Cockpit::Cockpit(gpio_num_t pin, int leds, int pTime, int tCycle, byte brightnessState){
Color Cockpit::ORANGE = {.blue=0, .red=255, .green=0xA5};
Color Cockpit::RED = {.blue=0, .red=255, .green=0};
Color Cockpit::BLUE = {.blue=255, .red=0, .green=0};
Color Cockpit::GREEN = {.blue=0, .red=0, .green=255};
Color Cockpit::CYAN = {.blue=0xff, .red=0, .green=0xff};
Color Cockpit::WHITE = {.blue=255, .red=255, .green=255};
Color Cockpit::BLACK = {.blue=0, .red=0, .green=0};
Color Cockpit::YELLOW = {.blue=0, .red=0xFF, .green=0xC0};
Color Cockpit::PURPLE = {.blue=0xBF, .red=0xBF, .green=0x40};
Cockpit::Cockpit(gpio_num_t pin, int leds, int pTime, int tCycle, uint8_t brightnessState){
this->pin = pin;
this->leds = leds;
this->pTime = pTime;
@@ -9,217 +20,338 @@ Cockpit::Cockpit(gpio_num_t pin, int leds, int pTime, int tCycle, byte brightnes
this->brightnessState = brightnessState;
this->cp = 0;
}
void Cockpit::knightRider(int state){
byte color = 1;
this->turnOffLeds();
Color Cockpit::scaleBrightness(Color color, uint8_t dimmfactor){
// dimmfactor is an addition option to dimm led
Color scaledColor = color;
scaledColor.blue = uint8_t(this->brightness[brightnessState] / 255.0 * color.blue * dimmfactor /100.0);
scaledColor.red = uint8_t(this->brightness[brightnessState] / 255.0 * color.red * dimmfactor /100.0);
scaledColor.green = uint8_t(this->brightness[brightnessState] / 255.0 * color.green * dimmfactor /100.0);
return scaledColor;
}
byte brightness = this->brightnessState;
byte dimmedIntensitiy = brightness / 2;
byte heavyDimmedIntensitiy = brightness / 4;
void Cockpit::setColorLed(struct Color color, uint8_t led){
this->stateLEDs[led] = color;
}
int step = state % 13;
switch (step)
{
case 0:
this->stateLEDs[0][color] = brightness;
// step += 1;
break;
case 1:
this->stateLEDs[0][color] = dimmedIntensitiy;
this->stateLEDs[1][color] = brightness;
// step++;
break;
case 2:
this->stateLEDs[0][color] = heavyDimmedIntensitiy;
this->stateLEDs[1][color] = dimmedIntensitiy;
this->stateLEDs[2][color] = brightness;
// step++;
break;
case 3:
this->stateLEDs[0][color] = 0;
this->stateLEDs[1][color] = heavyDimmedIntensitiy;
this->stateLEDs[2][color] = dimmedIntensitiy;
this->stateLEDs[3][color] = brightness;
// step++;
break;
case 4:
this->stateLEDs[1][color] = 0;
this->stateLEDs[2][color] = heavyDimmedIntensitiy;
this->stateLEDs[3][color] = dimmedIntensitiy;
this->stateLEDs[4][color] = brightness;
// step++;
break;
case 5:
this->stateLEDs[2][color] = 0;
this->stateLEDs[3][color] = heavyDimmedIntensitiy;
this->stateLEDs[4][color] = dimmedIntensitiy;
this->stateLEDs[5][color] = brightness;
// step++;
break;
case 6:
this->stateLEDs[3][color] = 0;
this->stateLEDs[4][color] = heavyDimmedIntensitiy;
this->stateLEDs[5][color] = dimmedIntensitiy;
this->stateLEDs[6][color] = brightness;
// step++;
break;
case 7:
this->stateLEDs[4][color] = 0;
this->stateLEDs[5][color] = brightness;
this->stateLEDs[6][color] = dimmedIntensitiy;
// step++;
break;
case 8:
this->stateLEDs[4][color] = brightness;
this->stateLEDs[5][color] = dimmedIntensitiy;
this->stateLEDs[6][color] = heavyDimmedIntensitiy;
// step++;
break;
case 9:
this->stateLEDs[3][color] = brightness;
this->stateLEDs[4][color] = dimmedIntensitiy;
this->stateLEDs[5][color] = heavyDimmedIntensitiy;
this->stateLEDs[6][color] = 0;
// step++;
break;
case 10:
this->stateLEDs[2][color] = brightness;
this->stateLEDs[3][color] = dimmedIntensitiy;
this->stateLEDs[4][color] = heavyDimmedIntensitiy;
this->stateLEDs[5][color] = 0;
// step++;
break;
case 11:
this->stateLEDs[1][color] = brightness;
this->stateLEDs[2][color] = dimmedIntensitiy;
this->stateLEDs[3][color] = heavyDimmedIntensitiy;
this->stateLEDs[4][color] = 0;
// step++;
break;
case 12:
this->stateLEDs[0][color] = brightness;
this->stateLEDs[1][color] = dimmedIntensitiy;
this->stateLEDs[2][color] = heavyDimmedIntensitiy;
this->stateLEDs[3][color] = 0;
// step++;
break;
void Cockpit::fillFromLeft(Color color, int state){
// scale state to sufficient range
state = state % NUM_LEDS;
turnOffLeds();
default:
break;
for(uint8_t led = 0; led <= state; led++){
this->stateLEDs[led] = scaleBrightness(color);
}
this->writeLEDs();
}
byte scaleColor(byte color, int scaleFactor){
return byte(color * (float)scaleFactor / 255);
void Cockpit::outToIn(Color color, int state){
state = state % 5;
turnOffLeds();
for(int8_t i = -1; i <= state; i++){
if(i < 0){
this->stateLEDs[i] = BLACK;
}
else{
this->stateLEDs[i-1] = scaleBrightness(color);
this->stateLEDs[NUM_LEDS-i] = scaleBrightness(color);
}
}
writeLEDs();
}
void Cockpit::outToInMulticolor(Color color[], uint8_t colors, int state){
uint8_t curColorIndex = state / 5;
state = state % 5;
turnOffLeds();
void Cockpit::knightRiderColored(int state, byte color[]){
int step = state % (this->leds*2-1);
if (step < this->leds){
this->stateLEDs[step][0] = scaleColor(color[0], this->brightness[this->brightnessState]);
this->stateLEDs[step][1] = scaleColor(color[1], this->brightness[this->brightnessState]);
this->stateLEDs[step][2] = scaleColor(color[2], this->brightness[this->brightnessState]);
if(step < 1){
this->stateLEDs[1][0] = 0;
this->stateLEDs[1][1] = 0;
this->stateLEDs[1][2] = 0;
this->stateLEDs[2][0] = 0;
this->stateLEDs[2][1] = 0;
this->stateLEDs[2][2] = 0;
if(curColorIndex == 0){
for(int8_t i = -1; i <= state; i++){
if(i < 0){
this->stateLEDs[i] = BLACK;
}
if (step > 0){
this->stateLEDs[step-1][0] = scaleColor(color[0], this->brightness[this->brightnessState]/2);
this->stateLEDs[step-1][1] = scaleColor(color[1], this->brightness[this->brightnessState]/2);
this->stateLEDs[step-1][2] = scaleColor(color[2], this->brightness[this->brightnessState]/2);
else{
if(curColorIndex < colors && i-1 < NUM_LEDS && NUM_LEDS-i < NUM_LEDS){ // just for safety
this->stateLEDs[i-1] = scaleBrightness(color[curColorIndex]);
this->stateLEDs[NUM_LEDS-i] = scaleBrightness(color[curColorIndex]);
}
if (step > 1){
this->stateLEDs[step-2][0] = scaleColor(color[0], this->brightness[this->brightnessState]/4);
this->stateLEDs[step-2][1] = scaleColor(color[1], this->brightness[this->brightnessState]/4);
this->stateLEDs[step-2][2] = scaleColor(color[2], this->brightness[this->brightnessState]/4);
}
if (step > 2){
this->stateLEDs[step-3][0] = 0;
this->stateLEDs[step-3][1] = 0;
this->stateLEDs[step-3][2] = 0;
}
}
else{
int curLed = this->leds-2 - (step-this->leds);
// int curLed = step - (step%(this->leds-1))*2;
this->stateLEDs[curLed][0] = scaleColor(color[0], this->brightness[this->brightnessState]);
this->stateLEDs[curLed][1] = scaleColor(color[1], this->brightness[this->brightnessState]);
this->stateLEDs[curLed][2] = scaleColor(color[2], this->brightness[this->brightnessState]);
if(curLed < this->leds-1){
this->stateLEDs[curLed+1][0] = scaleColor(color[0], this->brightness[this->brightnessState]/2);
this->stateLEDs[curLed+1][1] = scaleColor(color[1], this->brightness[this->brightnessState]/2);
this->stateLEDs[curLed+1][2] = scaleColor(color[2], this->brightness[this->brightnessState]/2);
// predraw last color
for(uint8_t i = 0; i < NUM_LEDS; i++){
this->stateLEDs[i] = scaleBrightness(color[curColorIndex-1]);
}
if(curLed < this->leds-2){
this->stateLEDs[curLed+2][0] = scaleColor(color[0], this->brightness[this->brightnessState]/4);
this->stateLEDs[curLed+2][1] = scaleColor(color[1], this->brightness[this->brightnessState]/4);
this->stateLEDs[curLed+2][2] = scaleColor(color[2], this->brightness[this->brightnessState]/4);
for(int8_t i = 0; i < state; i++){
this->stateLEDs[i] = scaleBrightness(color[curColorIndex]);
this->stateLEDs[NUM_LEDS-i-1] = scaleBrightness(color[curColorIndex]);
}
if(curLed < this->leds-3){
this->stateLEDs[curLed+3][0] = 0;
this->stateLEDs[curLed+3][1] = 0;
this->stateLEDs[curLed+3][2] = 0;
}
writeLEDs();
}
void Cockpit::inToOutMulticolor(Color color[], uint8_t colors, int state) {
uint8_t curColorIndex = state / 4;
state = state % 4;
turnOffLeds();
if(curColorIndex == 0){
for(int8_t i = 0; i <= state; i++){
// left part of leds
this->stateLEDs[3-i] = scaleBrightness(color[curColorIndex]);
//right part of leds
this->stateLEDs[3+i] = scaleBrightness(color[curColorIndex]);
}
}
else{
// predraw last color
for(uint8_t i = 0; i < NUM_LEDS; i++){
this->stateLEDs[i] = scaleBrightness(color[curColorIndex-1]);
}
for(int8_t i = 0; i < state; i++){
// left part of leds
this->stateLEDs[3-i] = scaleBrightness(color[curColorIndex]);
//right part of leds
this->stateLEDs[3+i] = scaleBrightness(color[curColorIndex]);
}
}
writeLEDs();
}
void Cockpit::colorfade(int state){
// 60 steps to get around the color circle
state = state % 60;
if(state < 20){ //red -> blue
for(uint8_t led = 0; led < NUM_LEDS; led++){
this->stateLEDs[led].red = uint8_t(255 / 20.0 * (20-state));
this->stateLEDs[led].blue = uint8_t(255 / 20.0 * state);
this->stateLEDs[led].green = 0;
this->stateLEDs[led] = scaleBrightness(this->stateLEDs[led]);
}
}
else if (state < 40){ //blue -> green
for(uint8_t led = 0; led < NUM_LEDS; led++){
this->stateLEDs[led].blue = uint8_t(255 / 20 * (20-(state-20)));
this->stateLEDs[led].green = uint8_t(255 / 20 * (state-20));
this->stateLEDs[led].red = 0;
this->stateLEDs[led] = scaleBrightness(this->stateLEDs[led]);
}
}
else{//green -> red
for(uint8_t led = 0; led < NUM_LEDS; led++){
this->stateLEDs[led].green = uint8_t(255 / 20 * (20-(state-40)));
this->stateLEDs[led].red = uint8_t(255 / 20 * (state-40));
this->stateLEDs[led].blue = 0;
this->stateLEDs[led] = scaleBrightness(this->stateLEDs[led]);
}
}
this->writeLEDs();
}
// void Cockpit::knightRider(int state){
// uint8_t color = 1;
// this->turnOffLeds();
// uint8_t brightness = this->brightnessState;
// uint8_t dimmedIntensitiy = brightness / 2;
// uint8_t heavyDimmedIntensitiy = brightness / 4;
// int step = state % 13;
// switch (step)
// {
// case 0:
// this->stateLEDs[0][color] = brightness;
// // step += 1;
// break;
// case 1:
// this->stateLEDs[0][color] = dimmedIntensitiy;
// this->stateLEDs[1][color] = brightness;
// // step++;
// break;
// case 2:
// this->stateLEDs[0][color] = heavyDimmedIntensitiy;
// this->stateLEDs[1][color] = dimmedIntensitiy;
// this->stateLEDs[2][color] = brightness;
// // step++;
// break;
// case 3:
// this->stateLEDs[0][color] = 0;
// this->stateLEDs[1][color] = heavyDimmedIntensitiy;
// this->stateLEDs[2][color] = dimmedIntensitiy;
// this->stateLEDs[3][color] = brightness;
// // step++;
// break;
// case 4:
// this->stateLEDs[1][color] = 0;
// this->stateLEDs[2][color] = heavyDimmedIntensitiy;
// this->stateLEDs[3][color] = dimmedIntensitiy;
// this->stateLEDs[4][color] = brightness;
// // step++;
// break;
// case 5:
// this->stateLEDs[2][color] = 0;
// this->stateLEDs[3][color] = heavyDimmedIntensitiy;
// this->stateLEDs[4][color] = dimmedIntensitiy;
// this->stateLEDs[5][color] = brightness;
// // step++;
// break;
// case 6:
// this->stateLEDs[3][color] = 0;
// this->stateLEDs[4][color] = heavyDimmedIntensitiy;
// this->stateLEDs[5][color] = dimmedIntensitiy;
// this->stateLEDs[6][color] = brightness;
// // step++;
// break;
// case 7:
// this->stateLEDs[4][color] = 0;
// this->stateLEDs[5][color] = brightness;
// this->stateLEDs[6][color] = dimmedIntensitiy;
// // step++;
// break;
// case 8:
// this->stateLEDs[4][color] = brightness;
// this->stateLEDs[5][color] = dimmedIntensitiy;
// this->stateLEDs[6][color] = heavyDimmedIntensitiy;
// // step++;
// break;
// case 9:
// this->stateLEDs[3][color] = brightness;
// this->stateLEDs[4][color] = dimmedIntensitiy;
// this->stateLEDs[5][color] = heavyDimmedIntensitiy;
// this->stateLEDs[6][color] = 0;
// // step++;
// break;
// case 10:
// this->stateLEDs[2][color] = brightness;
// this->stateLEDs[3][color] = dimmedIntensitiy;
// this->stateLEDs[4][color] = heavyDimmedIntensitiy;
// this->stateLEDs[5][color] = 0;
// // step++;
// break;
// case 11:
// this->stateLEDs[1][color] = brightness;
// this->stateLEDs[2][color] = dimmedIntensitiy;
// this->stateLEDs[3][color] = heavyDimmedIntensitiy;
// this->stateLEDs[4][color] = 0;
// // step++;
// break;
// case 12:
// this->stateLEDs[0][color] = brightness;
// this->stateLEDs[1][color] = dimmedIntensitiy;
// this->stateLEDs[2][color] = heavyDimmedIntensitiy;
// this->stateLEDs[3][color] = 0;
// // step++;
// break;
// default:
// break;
// }
// this->writeLEDs();
// }
void Cockpit::knightRiderAdvanced(Color color, int state){
this->turnOffLeds();
// 15 states
state = state % 15;
if(state < 7){
this->stateLEDs[state] = scaleBrightness(color);
if(state > 0){
this->stateLEDs[state-1] = scaleBrightness(color, 70);
}
if(state > 1){
this->stateLEDs[state-2] = scaleBrightness(color, 30);
}
}
else if(state < 14){
this->stateLEDs[2*NUM_LEDS-(state)-1] = scaleBrightness(color);
if(state > 8){
this->stateLEDs[2*NUM_LEDS-(state)-1+1] = scaleBrightness(color, 70);
}
if(state > 9){
this->stateLEDs[2*NUM_LEDS-(state)-1+2] = scaleBrightness(color, 30);
}
}
else{
this->turnOffLeds();
}
this->writeLEDs();
}
uint8_t scaleColor(uint8_t color, int scaleFactor){
return uint8_t(color * (float)scaleFactor / 255);
}
void Cockpit::turnOffLeds(){
for(byte led = 0; led < 7; led++){
for(byte color = 0; color < 3; color++){
this->stateLEDs[led][color] = 0;
}
for(uint8_t led = 0; led < NUM_LEDS; led++){
this->stateLEDs[led] = BLACK;
}
this->writeLEDs();
}
void Cockpit::runningLights(byte color){
this->turnOffLeds();
for(byte led = 0; led < 7; led++){
this->stateLEDs[led][0] = 10;
writeLEDs();
delay(30);
void Cockpit::brightnessUp(){
if(this->brightnessState < 6){
this->brightnessState++;
}
}
void Cockpit::brightnessDown(){
if(this->brightnessState > 0){
this->brightnessState--;
}
}
void Cockpit::setBrightnessState(int brightnessState, int state){
this->brightnessState = brightnessState;
if (state < 10){
void Cockpit::displayBrightness(Color color){
for(int i = 0; i < this->leds; i++){
if(i <= brightnessState){
this->stateLEDs[i][0] = this->brightness[this->brightnessState];
this->stateLEDs[i][1] = 0;
this->stateLEDs[i][2] = 0;
this->stateLEDs[i] = scaleBrightness(color);
// this->stateLEDs[i][0] = this->brightness[this->brightnessState];
// this->stateLEDs[i][1] = 0;
// this->stateLEDs[i][2] = 0;
}
else{
this->stateLEDs[i][0] = 0;
this->stateLEDs[i][1] = 0;
this->stateLEDs[i][2] = 0;
this->stateLEDs[i] = BLACK;
// this->stateLEDs[i][0] = 0;
// this->stateLEDs[i][1] = 0;
// this->stateLEDs[i][2] = 0;
}
}
writeLEDs();
}
else{
for(int i = 0; i < this->leds; i++){
this->stateLEDs[i][0] = 0;
this->stateLEDs[i][1] = 0;
this->stateLEDs[i][2] = 0;
}
writeLEDs();
}
}
// void Cockpit::setBrightnessState(int brightnessState, int state){
// this->brightnessState = brightnessState;
// if (state < 10){
// for(int i = 0; i < this->leds; i++){
// if(i <= brightnessState){
// this->stateLEDs[i][0] = this->brightness[this->brightnessState];
// this->stateLEDs[i][1] = 0;
// this->stateLEDs[i][2] = 0;
// }
// else{
// this->stateLEDs[i][0] = 0;
// this->stateLEDs[i][1] = 0;
// this->stateLEDs[i][2] = 0;
// }
// }
// writeLEDs();
// }
// else{
// for(int i = 0; i < this->leds; i++){
// this->stateLEDs[i][0] = 0;
// this->stateLEDs[i][1] = 0;
// this->stateLEDs[i][2] = 0;
// }
// writeLEDs();
// }
// }
void Cockpit::alternating(byte color[3], int state, int frequencyDivider){
void Cockpit::alternating(Color color, int state, int frequencyDivider){
if(state % (frequencyDivider*2) < frequencyDivider){
state = 0;
}
@@ -227,32 +359,24 @@ void Cockpit::alternating(byte color[3], int state, int frequencyDivider){
state = 1;
}
if(state % 2 == 0){
for(byte led = 0; led < this->leds; led++){
for(uint8_t led = 0; led < this->leds; led++){
if(led % 2 == 0){
this->stateLEDs[led][0] = int(color[0] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][1] = int(color[1] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][2] = int(color[2] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led] = scaleBrightness(color);
}
else{
this->stateLEDs[led][0] = 0;
this->stateLEDs[led][1] = 0;
this->stateLEDs[led][2] = 0;
this->stateLEDs[led] = BLACK;
}
}
this->writeLEDs();
}
else{
for(byte led = 0; led < this->leds; led++){
for(uint8_t led = 0; led < this->leds; led++){
if(led % 2 == 1){
this->stateLEDs[led][0] = int(color[0] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][1] = int(color[1] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][2] = int(color[2] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led] = scaleBrightness(color);
}
else{
this->stateLEDs[led][0] = 0;
this->stateLEDs[led][1] = 0;
this->stateLEDs[led][2] = 0;
this->stateLEDs[led] = BLACK;
}
}
@@ -260,35 +384,17 @@ void Cockpit::alternating(byte color[3], int state, int frequencyDivider){
}
}
void Cockpit::getColor(int state, byte color[]){
color[0] = (state * 10 ) % 255;
color[1] = (state * 10 +100) % 255;
color[2] = (state * 10 +200) % 255;
}
void Cockpit::flashing(byte color[3], int state, uint8_t frequencyDivider){
if(state % frequencyDivider < frequencyDivider/2){
for(byte led = 0; led < this->leds; led++){
this->stateLEDs[led][0] = int(color[0] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][1] = int(color[1] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][2] = int(color[2] * (float)this->brightness[this->brightnessState] / 255);
void Cockpit::flashing(Color color, int state){
if(state % 2 == 0){
for(uint8_t led = 0; led < this->leds; led++){
this->stateLEDs[led] = scaleBrightness(color);
}
this->writeLEDs();
}
else{
for(byte led = 0; led < this->leds; led++){
// for(byte colorCtr = 0; colorCtr < 3; colorCtr++){
// stateled[led][colorCtr] = 0;
// }
this->stateLEDs[led][0] = 0;
this->stateLEDs[led][1] = 0;
this->stateLEDs[led][2] = 0;
// stateled[led][color[1]] = 10;
// stateled[led][color[2]] = 10;
// stateled[led][1] = 10;
for(uint8_t led = 0; led < this->leds; led++){
this->stateLEDs[led] = BLACK;
}
this->writeLEDs();
}
@@ -299,9 +405,9 @@ void Cockpit::writeLEDs(){
for (int i = 0; i < this->leds; i++) {
this->writeCommand();
this->writeData(this->stateLEDs[i][0]);
this->writeData(this->stateLEDs[i][1]);
this->writeData(this->stateLEDs[i][2]);
this->writeData(this->stateLEDs[i].blue);
this->writeData(this->stateLEDs[i].red);
this->writeData(this->stateLEDs[i].green);
this->waitEOS();
}
@@ -310,7 +416,7 @@ void Cockpit::writeLEDs(){
void Cockpit::writeLED(byte led) {
void Cockpit::writeLED(uint8_t led) {
this->writeCommTimer();
for (int i = 0; i < this->leds; i++) {
this->writeCommand();
@@ -319,14 +425,14 @@ void Cockpit::writeLED(byte led) {
// this->writeData(redValue);
// this->writeData(greenValue);
// this->writeData(blueValue);
this->writeData(this->stateLEDs[i][0]);
this->writeData(this->stateLEDs[i][1]);
this->writeData(this->stateLEDs[i][2]);
this->writeData(this->stateLEDs[i].blue);
this->writeData(this->stateLEDs[i].red);
this->writeData(this->stateLEDs[i].green);
}
else{
this->writeData(byte(0));
this->writeData(byte(0));
this->writeData(byte(0));
this->writeData(0);
this->writeData(0);
this->writeData(0);
}
this->waitEOS();
}
@@ -612,9 +718,9 @@ void Cockpit::waitGSLAT() {
#endif
}
void Cockpit::writeData(byte data) {
for (byte i = 0; i<8; i++) {
if(data & B10000000) {
void Cockpit::writeData(uint8_t data) {
for (uint8_t i = 0; i<8; i++) {
if(data & 0b10000000) {
this->writeOne();
}
else{

681
src/tlc.cpp.old Normal file
View File

@@ -0,0 +1,681 @@
#include "tlc.hpp"
Cockpit::Cockpit(gpio_num_t pin, int leds, int pTime, int tCycle, byte brightnessState){
this->pin = pin;
this->leds = leds;
this->pTime = pTime;
this->tCycle = tCycle;
// this->brightness = brightness;
this->brightnessState = brightnessState;
this->cp = 0;
}
void Cockpit::knightRider(int state){
byte color = 1;
this->turnOffLeds();
byte brightness = this->brightnessState;
byte dimmedIntensitiy = brightness / 2;
byte heavyDimmedIntensitiy = brightness / 4;
int step = state % 13;
switch (step)
{
case 0:
this->stateLEDs[0][color] = brightness;
// step += 1;
break;
case 1:
this->stateLEDs[0][color] = dimmedIntensitiy;
this->stateLEDs[1][color] = brightness;
// step++;
break;
case 2:
this->stateLEDs[0][color] = heavyDimmedIntensitiy;
this->stateLEDs[1][color] = dimmedIntensitiy;
this->stateLEDs[2][color] = brightness;
// step++;
break;
case 3:
this->stateLEDs[0][color] = 0;
this->stateLEDs[1][color] = heavyDimmedIntensitiy;
this->stateLEDs[2][color] = dimmedIntensitiy;
this->stateLEDs[3][color] = brightness;
// step++;
break;
case 4:
this->stateLEDs[1][color] = 0;
this->stateLEDs[2][color] = heavyDimmedIntensitiy;
this->stateLEDs[3][color] = dimmedIntensitiy;
this->stateLEDs[4][color] = brightness;
// step++;
break;
case 5:
this->stateLEDs[2][color] = 0;
this->stateLEDs[3][color] = heavyDimmedIntensitiy;
this->stateLEDs[4][color] = dimmedIntensitiy;
this->stateLEDs[5][color] = brightness;
// step++;
break;
case 6:
this->stateLEDs[3][color] = 0;
this->stateLEDs[4][color] = heavyDimmedIntensitiy;
this->stateLEDs[5][color] = dimmedIntensitiy;
this->stateLEDs[6][color] = brightness;
// step++;
break;
case 7:
this->stateLEDs[4][color] = 0;
this->stateLEDs[5][color] = brightness;
this->stateLEDs[6][color] = dimmedIntensitiy;
// step++;
break;
case 8:
this->stateLEDs[4][color] = brightness;
this->stateLEDs[5][color] = dimmedIntensitiy;
this->stateLEDs[6][color] = heavyDimmedIntensitiy;
// step++;
break;
case 9:
this->stateLEDs[3][color] = brightness;
this->stateLEDs[4][color] = dimmedIntensitiy;
this->stateLEDs[5][color] = heavyDimmedIntensitiy;
this->stateLEDs[6][color] = 0;
// step++;
break;
case 10:
this->stateLEDs[2][color] = brightness;
this->stateLEDs[3][color] = dimmedIntensitiy;
this->stateLEDs[4][color] = heavyDimmedIntensitiy;
this->stateLEDs[5][color] = 0;
// step++;
break;
case 11:
this->stateLEDs[1][color] = brightness;
this->stateLEDs[2][color] = dimmedIntensitiy;
this->stateLEDs[3][color] = heavyDimmedIntensitiy;
this->stateLEDs[4][color] = 0;
// step++;
break;
case 12:
this->stateLEDs[0][color] = brightness;
this->stateLEDs[1][color] = dimmedIntensitiy;
this->stateLEDs[2][color] = heavyDimmedIntensitiy;
this->stateLEDs[3][color] = 0;
// step++;
break;
default:
break;
}
this->writeLEDs();
}
void Cockpit::knightRiderAdvanced(int state){
byte color = 1;
this->turnOffLeds();
byte rampUpSteps = 0;
byte highSteps = 4;
byte rampDownSteps = 4;
byte slotSteps = rampUpSteps + highSteps + rampDownSteps;
byte brightnessRampUpStep = this->brightness[brightnessState]/rampUpSteps;
byte brightnessRampDownStep = this->brightness[brightnessState]/rampDownSteps;
int lowerBoundSlot = 0;
int upperBoundSlot = slotSteps;
uint8_t index;
state = state % (slotSteps+12*2);
// sequence of 70 states
for(int i = 0; i < 13; i++){
lowerBoundSlot = i*2;
upperBoundSlot = i*2 + slotSteps;
if(i < 7){
index = i;
}
else{
index = 6-(i-6);
}
if (state >= lowerBoundSlot && state < upperBoundSlot){
// ramp up
if(state >= lowerBoundSlot && state < lowerBoundSlot + rampUpSteps){
this->stateLEDs[index][color] = brightnessRampUpStep * (state-lowerBoundSlot);
if(this->stateLEDs[index][color] > this->brightness[brightnessState]){
this->stateLEDs[index][color] = this->brightness[brightnessState];
}
}
// high
if (state >= lowerBoundSlot + rampUpSteps && state < lowerBoundSlot+rampUpSteps+highSteps) {
this->stateLEDs[index][color] = this->brightness[brightnessState];
}
// ramp down
else if(state >= lowerBoundSlot + rampUpSteps + highSteps && state < upperBoundSlot){
this->stateLEDs[index][color] = this->brightness[this->brightnessState] - brightnessRampDownStep*(state-(upperBoundSlot-rampDownSteps));
if(this->stateLEDs[index][color] < 0){
this->stateLEDs[index][color] = 0;
}
}
}
}
this->writeLEDs();
}
byte scaleColor(byte color, int scaleFactor){
return byte(color * (float)scaleFactor / 255);
}
void Cockpit::knightRiderColored(int state, byte color[]){
int step = state % (this->leds*2-1);
if (step < this->leds){
this->stateLEDs[step][0] = scaleColor(color[0], this->brightness[this->brightnessState]);
this->stateLEDs[step][1] = scaleColor(color[1], this->brightness[this->brightnessState]);
this->stateLEDs[step][2] = scaleColor(color[2], this->brightness[this->brightnessState]);
if(step < 1){
this->stateLEDs[1][0] = 0;
this->stateLEDs[1][1] = 0;
this->stateLEDs[1][2] = 0;
this->stateLEDs[2][0] = 0;
this->stateLEDs[2][1] = 0;
this->stateLEDs[2][2] = 0;
}
if (step > 0){
this->stateLEDs[step-1][0] = scaleColor(color[0], this->brightness[this->brightnessState]/2);
this->stateLEDs[step-1][1] = scaleColor(color[1], this->brightness[this->brightnessState]/2);
this->stateLEDs[step-1][2] = scaleColor(color[2], this->brightness[this->brightnessState]/2);
}
if (step > 1){
this->stateLEDs[step-2][0] = scaleColor(color[0], this->brightness[this->brightnessState]/4);
this->stateLEDs[step-2][1] = scaleColor(color[1], this->brightness[this->brightnessState]/4);
this->stateLEDs[step-2][2] = scaleColor(color[2], this->brightness[this->brightnessState]/4);
}
if (step > 2){
this->stateLEDs[step-3][0] = 0;
this->stateLEDs[step-3][1] = 0;
this->stateLEDs[step-3][2] = 0;
}
}
else{
int curLed = this->leds-2 - (step-this->leds);
// int curLed = step - (step%(this->leds-1))*2;
this->stateLEDs[curLed][0] = scaleColor(color[0], this->brightness[this->brightnessState]);
this->stateLEDs[curLed][1] = scaleColor(color[1], this->brightness[this->brightnessState]);
this->stateLEDs[curLed][2] = scaleColor(color[2], this->brightness[this->brightnessState]);
if(curLed < this->leds-1){
this->stateLEDs[curLed+1][0] = scaleColor(color[0], this->brightness[this->brightnessState]/2);
this->stateLEDs[curLed+1][1] = scaleColor(color[1], this->brightness[this->brightnessState]/2);
this->stateLEDs[curLed+1][2] = scaleColor(color[2], this->brightness[this->brightnessState]/2);
}
if(curLed < this->leds-2){
this->stateLEDs[curLed+2][0] = scaleColor(color[0], this->brightness[this->brightnessState]/4);
this->stateLEDs[curLed+2][1] = scaleColor(color[1], this->brightness[this->brightnessState]/4);
this->stateLEDs[curLed+2][2] = scaleColor(color[2], this->brightness[this->brightnessState]/4);
}
if(curLed < this->leds-3){
this->stateLEDs[curLed+3][0] = 0;
this->stateLEDs[curLed+3][1] = 0;
this->stateLEDs[curLed+3][2] = 0;
}
}
this->writeLEDs();
}
void Cockpit::turnOffLeds(){
for(byte led = 0; led < 7; led++){
for(byte color = 0; color < 3; color++){
this->stateLEDs[led][color] = 0;
}
}
this->writeLEDs();
}
void Cockpit::runningLights(byte color){
this->turnOffLeds();
for(byte led = 0; led < 7; led++){
this->stateLEDs[led][0] = 10;
writeLEDs();
delay(30);
}
}
void Cockpit::setBrightnessState(int brightnessState, int state){
this->brightnessState = brightnessState;
if (state < 10){
for(int i = 0; i < this->leds; i++){
if(i <= brightnessState){
this->stateLEDs[i][0] = this->brightness[this->brightnessState];
this->stateLEDs[i][1] = 0;
this->stateLEDs[i][2] = 0;
}
else{
this->stateLEDs[i][0] = 0;
this->stateLEDs[i][1] = 0;
this->stateLEDs[i][2] = 0;
}
}
writeLEDs();
}
else{
for(int i = 0; i < this->leds; i++){
this->stateLEDs[i][0] = 0;
this->stateLEDs[i][1] = 0;
this->stateLEDs[i][2] = 0;
}
writeLEDs();
}
}
void Cockpit::alternating(byte color[3], int state, int frequencyDivider){
if(state % (frequencyDivider*2) < frequencyDivider){
state = 0;
}
else{
state = 1;
}
if(state % 2 == 0){
for(byte led = 0; led < this->leds; led++){
if(led % 2 == 0){
this->stateLEDs[led][0] = int(color[0] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][1] = int(color[1] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][2] = int(color[2] * (float)this->brightness[this->brightnessState] / 255);
}
else{
this->stateLEDs[led][0] = 0;
this->stateLEDs[led][1] = 0;
this->stateLEDs[led][2] = 0;
}
}
this->writeLEDs();
}
else{
for(byte led = 0; led < this->leds; led++){
if(led % 2 == 1){
this->stateLEDs[led][0] = int(color[0] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][1] = int(color[1] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][2] = int(color[2] * (float)this->brightness[this->brightnessState] / 255);
}
else{
this->stateLEDs[led][0] = 0;
this->stateLEDs[led][1] = 0;
this->stateLEDs[led][2] = 0;
}
}
this->writeLEDs();
}
}
void Cockpit::getColor(int state, byte color[]){
color[0] = (state * 10 ) % 255;
color[1] = (state * 10 +100) % 255;
color[2] = (state * 10 +200) % 255;
}
void Cockpit::flashing(byte color[3], int state, uint8_t frequencyDivider){
if(state % frequencyDivider < frequencyDivider/2){
for(byte led = 0; led < this->leds; led++){
this->stateLEDs[led][0] = int(color[0] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][1] = int(color[1] * (float)this->brightness[this->brightnessState] / 255);
this->stateLEDs[led][2] = int(color[2] * (float)this->brightness[this->brightnessState] / 255);
}
this->writeLEDs();
}
else{
for(byte led = 0; led < this->leds; led++){
// for(byte colorCtr = 0; colorCtr < 3; colorCtr++){
// stateled[led][colorCtr] = 0;
// }
this->stateLEDs[led][0] = 0;
this->stateLEDs[led][1] = 0;
this->stateLEDs[led][2] = 0;
// stateled[led][color[1]] = 10;
// stateled[led][color[2]] = 10;
// stateled[led][1] = 10;
}
this->writeLEDs();
}
}
void Cockpit::writeLEDs(){
this->writeCommTimer();
for (int i = 0; i < this->leds; i++) {
this->writeCommand();
this->writeData(this->stateLEDs[i][0]);
this->writeData(this->stateLEDs[i][1]);
this->writeData(this->stateLEDs[i][2]);
this->waitEOS();
}
this->waitGSLAT();
}
void Cockpit::writeLED(byte led) {
this->writeCommTimer();
for (int i = 0; i < this->leds; i++) {
this->writeCommand();
if (i == this->leds){
// this->writeData(redValue);
// this->writeData(greenValue);
// this->writeData(blueValue);
this->writeData(this->stateLEDs[i][0]);
this->writeData(this->stateLEDs[i][1]);
this->writeData(this->stateLEDs[i][2]);
}
else{
this->writeData(byte(0));
this->writeData(byte(0));
this->writeData(byte(0));
}
this->waitEOS();
}
this->waitGSLAT();
}
void Cockpit::writeZero() {
// PORTB |= B1; //uno
#if defined(INVERSE_MODE)
#if defined(MODE_RMT)
this->led_data[this->cp].level0 = 0;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = 0;
this->led_data[this->cp].duration1 = 1;
this->cp++;
this->led_data[this->cp].level0 = 1;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = 1;
this->led_data[this->cp].duration1 = 1;
this->cp++;
for(int i = 0; i < 5; i++){
this->led_data[this->cp].level0 = this->led_data[this->cp-1].level0;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = this->led_data[this->cp-1].level1;
this->led_data[this->cp].duration1 = 1;
this->cp++;
}
#else
#if defined(MODE_INTERRUPT)
this->buffer[this->cp] = 0;
this->cp++;
this->buffer[this->cp] = 1;
this->cp++;
this->buffer[this->cp] = this->buffer[this->cp-1];
this->cp++;
this->buffer[this->cp] = this->buffer[this->cp-1];
this->cp++;
this->buffer[this->cp] = this->buffer[this->cp-1];
this->cp++;
this->buffer[this->cp] = this->buffer[this->cp-1];
this->cp++;
this->buffer[this->cp] = this->buffer[this->cp-1];
this->cp++;
#else
gpio_set_level(this->pin, 0);
delayMicroseconds(pTime);
gpio_set_level(this->pin, 1);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
#endif
#endif
#else
digitalWrite(this->pin, HIGH);
delayMicroseconds(pTime);
// PORTB &= B111110; //uno
digitalWrite(this->pin, LOW);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
#endif
}
void Cockpit::writeOne() {
// PORTB |= B1; //uno
#if defined(INVERSE_MODE)
#if defined(MODE_RMT)
this->led_data[this->cp].level0 = 0;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = 0;
this->led_data[this->cp].duration1 = 1;
this->cp++;
this->led_data[this->cp].level0 = 1;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = 1;
this->led_data[this->cp].duration1 = 1;
this->cp++;
this->led_data[this->cp].level0 = 0;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = 0;
this->led_data[this->cp].duration1 = 1;
this->cp++;
this->led_data[this->cp].level0 = 1;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = 1;
this->led_data[this->cp].duration1 = 1;
this->cp++;
this->led_data[this->cp].level0 = this->led_data[this->cp-1].level0;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = this->led_data[this->cp-1].level1;
this->led_data[this->cp].duration1 = 1;
this->cp++;
this->led_data[this->cp].level0 = this->led_data[this->cp-1].level0;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = this->led_data[this->cp-1].level1;
this->led_data[this->cp].duration1 = 1;
this->cp++;
this->led_data[this->cp].level0 = this->led_data[this->cp-1].level0;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = this->led_data[this->cp-1].level1;
this->led_data[this->cp].duration1 = 1;
this->cp++;
#else
#if defined(MODE_INTERRUPT)
this->buffer[this->cp] = 0;
this->cp++;
this->buffer[this->cp] = 1;
this->cp++;
this->buffer[this->cp] = 0;
this->cp++;
this->buffer[this->cp] = 1;
this->cp++;
this->buffer[this->cp] = this->buffer[this->cp-1];
this->cp++;
this->buffer[this->cp] = this->buffer[this->cp-1];
this->cp++;
this->buffer[this->cp] = this->buffer[this->cp-1];
this->cp++;
#else
gpio_set_level(this->pin, 0);
delayMicroseconds(pTime);
// PORTB &= B111110; //uno
gpio_set_level(this->pin, 1);
delayMicroseconds(pTime);
// PORTB |= B1; //rising edge of second pulse has to be within 0.5 * tCycle //uno
gpio_set_level(this->pin, 0);
delayMicroseconds(pTime);
// PORTB &= B111110; //uno
gpio_set_level(this->pin, 1);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
#endif
#endif
#else
digitalWrite(this->pin, HIGH);
delayMicroseconds(pTime);
// PORTB &= B111110; //uno
digitalWrite(this->pin, LOW);
delayMicroseconds(pTime);
// PORTB |= B1; //rising edge of second pulse has to be within 0.5 * tCycle //uno
digitalWrite(this->pin, HIGH);
delayMicroseconds(pTime);
// PORTB &= B111110; //uno
digitalWrite(this->pin, LOW);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
delayMicroseconds(pTime);
#endif
}
void Cockpit::writeCommTimer() {
//first two zeroes determine the timing (tcycle) after device is powered up or after a GSLAT
this->writeZero();
this->writeZero();
}
void Cockpit::writeCommand() {
this->writeZero();
this->writeZero();
this->writeOne();
this->writeOne();
this->writeOne();
this->writeZero();
this->writeOne();
this->writeZero();
}
//end of sequence (for a single driver chip)
void Cockpit::waitEOS() {
#if defined(INVERSE_MODE)
#if defined(MODE_RMT)
this->led_data[this->cp].level0 = 1;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = 1;
this->led_data[this->cp].duration1 = 1;
this->cp++;
#else
#if defined(MODE_INTERRUPT)
this->buffer[this->cp] = 1;
this->cp++;
#else
digitalWrite(this->pin, HIGH);
#endif
#endif
#else
digitalWrite(this->pin, LOW);
#endif
#if defined(MODE_RMT)
for(int i = this->cp; i < 24+this->cp; i++){
this->led_data[i].level0 = this->led_data[i-1].level0;
this->led_data[i].duration0 = 1;
this->led_data[i].level1 = this->led_data[i-1].level1;
this->led_data[i].duration1 = 1;
}
this->cp += 24; // tCycle is 6 * pTime
#else
#if defined(MODE_INTERRUPT)
for(int i = this->cp; i < 24+this->cp; i++){
this->buffer[i] = this->buffer[i-1];
}
this->cp += 24; // tCycle is 6 * pTime
#else
delayMicroseconds(this->tCycle*4); // min 3.5 to max 5.5 times tCycle
#endif
#endif
}
//grayscale latch (for the end of a chain of driver chips)
void Cockpit::waitGSLAT() {
// PORTB &= B111110; //uno
#if defined(INVERSE_MODE)
#if defined(MODE_RMT)
this->led_data[this->cp].level0 = 1;
this->led_data[this->cp].duration0 = 1;
this->led_data[this->cp].level1 = 1;
this->led_data[this->cp].duration1 = 1;
this->cp += 1;
#else
#if defined(MODE_INTERRUPT)
this->buffer[this->cp] = 1;
this->cp++;
#else
digitalWrite(this->pin, HIGH);
#endif
#endif
#else
digitalWrite(this->pin, LOW);
#endif
#if defined(MODE_RMT)
for(int i = this->cp; i < 60+this->cp; i++){
this->led_data[i].level0 = this->led_data[i-1].level0;
this->led_data[i].duration0 = 1;
this->led_data[i].level1 = this->led_data[i-1].level1;
this->led_data[i].duration1 = 1;
}
this->cp = 0; // minimum 8 time tCycle
#else
#if defined(MODE_INTERRUPT)
for(int i = this->cp; i < 60+this->cp; i++){
this->buffer[i] = this->buffer[i-1];
}
this->cp += 60; // tCycle is 6 * pTime
this->cp = 0; //reset cp
#else
delayMicroseconds(this->tCycle*10); // minimum 8 time tCycle
#endif
#endif
}
void Cockpit::writeData(byte data) {
for (byte i = 0; i<8; i++) {
if(data & B10000000) {
this->writeOne();
}
else{
this->writeZero();
}
data <<= 1;
}
}

View File

@@ -1,45 +1,103 @@
#include <Arduino.h>
#ifndef TLC_H
#define TLC_H
// #include <cstdint>
// #include <cstdint>
#include "Arduino.h"
#include <stdint.h>
#define INVERSE_MODE
#include "driver/gpio.h"
#include <inttypes.h>
#include "driver/rmt.h"
#define BUFFER_SIZE 1818
// #include "config.h"
// #define MODE_INTERRUPT
#define MODE_RMT
#define NUM_LEDS 7
#define COLOR_CHANNELS 3
class Cockpit;
enum Colors {
BLUE,
RED,
GREEN
};
typedef struct Color{
uint8_t blue;
uint8_t red;
uint8_t green;
} Color;
enum Alarm {
ALARM_1KM,
ALARM_500M,
ALARM_300M,
ALARM_100M,
NO_ALARM
};
enum Dimmer {
BRIGHTNESS_UP,
BRIGHTNESS_DOWN,
NO_DIMMER
};
enum Brightness{
BRIGHTER,
DARKER,
NO_CHANGE
};
class Cockpit{
private:
// byte brightness[7] = {5, 10, 20, 50, 70, 90, 100};
byte brightness[7] = {13, 25, 50, 127, 178, 229, 255};
int pTime;
int tCycle;
int leds; // amout of leds
// min value 0, max value 255
uint8_t brightness[NUM_LEDS] = {6, 25, 50, 127, 178, 229, 255};
uint8_t brightnessState;
uint8_t pTime;
uint8_t tCycle;
uint8_t leds; // amout of leds
// int pin; // pin connected to uC
gpio_num_t pin;
byte stateLEDs[7][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
byte brightnessState;
// uint8_t stateLEDs[LEDS][COLOR_CHANNELS] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
Color stateLEDs[NUM_LEDS] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
Color scaleBrightness(Color color, uint8_t additionDimm = 100);
void setColorLed(Color color, uint8_t led);
public:
static Color ORANGE;
static Color RED;
static Color BLUE;
static Color GREEN;
static Color CYAN;
static Color WHITE;
static Color BLACK;
static Color YELLOW;
static Color PURPLE;
int cp;
bool buffer[BUFFER_SIZE];
rmt_item32_t led_data[BUFFER_SIZE];
Cockpit(gpio_num_t pin, int leds, int pTime, int tCycle, byte brightness);
Cockpit(gpio_num_t pin, int leds, int pTime, int tCycle, uint8_t brightness);
void setBrightnessState(int brightness, int state);
void brightnessUp();
void brightnessDown();
void displayBrightness(Color color = {.blue=255, .red=0, .green=0});
void turnOffLeds();
void knightRider(int state);
void knightRiderColored(int state, byte color[]);
// void knightRider(int state);
void knightRiderAdvanced(Color color, int state);
void colorfade(int state);
void fillFromLeft(Color color, int state);
// void fillFromRight(Color color, int state);
void runningLights(byte color);
void flashing(byte color[3], int state, u_int8_t frequencyDivider);
void alternating(byte color[3], int state, int frequencyDivider);
void getColor(int state, byte color[3]);
void flashing(Color color, int state);
void alternating(Color color, int state, int frequencyDivider);
void outToIn(Color, int state);
void outToInMulticolor(Color color[], uint8_t colors, int state);
void inToOutMulticolor(Color color[], uint8_t colors, int state);
void writeLEDs();
void writeLED(byte ledNum);
void writeLED(uint8_t ledNum);
void writeZero();
void writeOne();
void writeCommTimer();
@@ -48,6 +106,6 @@ class Cockpit{
void waitEOS();
//grayscale latch (for the end of a chain of driver chips)
void waitGSLAT();
void writeData(byte data);
void writeData(uint8_t data);
};
#endif

54
src/tlc.hpp.old Normal file
View File

@@ -0,0 +1,54 @@
#include <Arduino.h>
#ifndef TLC_H
#define TLC_H
#define INVERSE_MODE
#include "driver/gpio.h"
#include "driver/rmt.h"
#define BUFFER_SIZE 1818
// #define MODE_INTERRUPT
#define MODE_RMT
class Cockpit{
private:
// byte brightness[7] = {5, 10, 20, 50, 70, 90, 100};
byte brightness[7] = {6, 25, 50, 127, 178, 229, 255};
int pTime;
int tCycle;
int leds; // amout of leds
// int pin; // pin connected to uC
gpio_num_t pin;
byte stateLEDs[7][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
byte brightnessState;
public:
int cp;
bool buffer[BUFFER_SIZE];
rmt_item32_t led_data[BUFFER_SIZE];
Cockpit(gpio_num_t pin, int leds, int pTime, int tCycle, byte brightness);
void setBrightnessState(int brightness, int state);
void turnOffLeds();
void knightRider(int state);
void knightRiderAdvanced(int state);
void knightRiderColored(int state, byte color[]);
void runningLights(byte color);
void flashing(byte color[3], int state, u_int8_t frequencyDivider);
void alternating(byte color[3], int state, int frequencyDivider);
void getColor(int state, byte color[3]);
void writeLEDs();
void writeLED(byte ledNum);
void writeZero();
void writeOne();
void writeCommTimer();
void writeCommand();
//end of sequence (for a single driver chip)
void waitEOS();
//grayscale latch (for the end of a chain of driver chips)
void waitGSLAT();
void writeData(byte data);
};
#endif